Technician License Course Chapter 3

Lesson Plan Module 7 – Types of Radio Circuits

The Basic Transceiver

- Combination of "transmitter" and "receiver"
 - Abbreviated "XCVR" (X = trans)
 - Antenna switched between transmitter and receiver by the TR switch

2014 Technician License Course

Transmit/Receive (TR) Switch

- TR switch allows a single antenna to be switched to the transmitter when sending and to the receiver when receiving.
 - In a transceiver, the TR switch is inside the unit and operates automatically.
 - Transceivers cannot transmit and receive at the same time like a repeater.

2014 Technician License Course

The Basic Repeater

- Relays signals from low-power stations over a wide area
 - Simultaneously retransmits received signal on the same band
 - TR switch replaced with duplexer which allows antenna to be shared without switching

What Happens During Radio Communication? (Review)

- Transmitting (sending a signal):
 - Information (voice, data, video, commands, etc.) is converted to electronic form.
 - The information in electronic form is added to a radio wave.
 - The radio wave carrying the information is sent from the station antenna into space.

2014 Technician License Course

What Happens During Radio Communication? (Review)

• Receiving:

- The radio wave carrying the information is intercepted by the receiving station's antenna.
- The receiver extracts the information from the received wave.
- The information is then presented to the user in a format that can be understood (sound, picture, words on a computer screen, response to a command, etc.).

2014 Technician License Course

What Happens During Radio Communication? (Review)

- Adding and extracting the information can be simple or complex.
- This makes ham radio fun...learning all about how radios work
- Don't be intimidated. You will be required to only know the basics, but you can learn as much about the "art and science" of radio as you want.

2014 Technician License Course

Simple Morse (CW) Transmitter Block Diagram

Filters

- Circuits that act on signals differently according to their frequency.
- Filters can reject, enhance, or modify signals.

2014 Technician License Course

Adding Information - Modulation

- When we add some information to the radio wave (the *carrier*), we *modulate* the wave.
 - Morse code (CW), speech, data
- Different modulation techniques vary different properties of the wave to add the information:
 - · Amplitude, frequency, or phase
- Modulator and demodulator circuits
 - Modulators add information to an RF signal, demodulators recover the information

2014 Technician License Course

Types of Filters

2014 Technician License Course

Changing Frequency - Mixers

- Signal frequencies can be changed by combining with another signal, called *mixing*
 - Also referred to as heterodyning
- Two signals are combined in a *mixer*
 - Generates mixing product signals
 - Sum and difference of the input signals
 - · Shifts frequency by adding or subtracting
- Different than a *multiplier* which multiplies a signal's frequency by some integer, usually 2 or 3

Sensitivity and Selectivity

- Two essential tasks for a receiver:
 - · Hear a signal and hear only one signal
- *Sensitivity* is a measure of how well the receiver can detect weak signals
- *Selectivity* is a measure of the receiver's ability to discriminate between signals
- Preamplifiers make a receiver more sensitive
 - Preamplifiers added between antenna and receiver

2014 Technician License Course

Transverter

- Short for "transceiving converter" (XVTR)
- Converts a transceiver to operate on another band
 - Usually to a higher frequency
 - External mixers shift frequency
- · Typical examples
 - HF SSB/CW at 28 MHz converted to/from 222 MHz
 - VHF SSB/CW at 144 MHz converted to/from 10 GHz

